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ABSTRACT  

We propose a new area of research on automating data 
narratives. Data narratives are containers of information about 
computationally generated research findings. They have three 
major components: 1) A record of events, that describe a new 
result through a workflow and/or provenance of all the 
computations executed; 2) Persistent entries for key entities 
involved for data, software versions, and workflows; 3) A set 
of narrative accounts that are automatically generated human-
consumable renderings of the record and entities and can be 
included in a paper. Different narrative accounts can be used 
for different audiences with different content and details, 
based on the level of interest or expertise of the reader. Data 
narratives can make science more transparent and 
reproducible, because they ensure that the text description of 
the computational experiment reflects with high fidelity what 
was actually done. Data narratives can be incorporated in 
papers, either in the methods section or as supplementary 
materials. We introduce DANA, a prototype that illustrates 
how to generate data narratives automatically, and describe 
the information it uses from the computational records. We 
also present a formative evaluation of our approach and 
discuss potential uses of automated data narratives. 
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INTRODUCTION 
The reproducibility of published scientific research has 
received significant attention [49]. For computational 
experiments, published papers often provide insufficient 
information about the data, protocols, software, and overall 
method used to obtain the new results [54]. A major challenge 

in reproducibility is the lack of appropriate support for authors 
to capture exactly how experiments were performed. Once the 
work is finished, authors write an account in their articles by 
retrospective reconstruction of the work that was actually done, 
relying on their memory and notes kept along the way. For 
research carried out in the field or laboratory, tracking 
accurately what was done can require discipline and effort. But 
why should reproducibility be challenging for computational 
experiments, when we have the infrastructure to capture 
accurately the computations that were carried out? We should 
have automated tools that ensure that the descriptions that are 
written about computational experiments are in fact accurate 
and provide enough detail for transparency and reproducibility. 

In this paper, we propose data narratives as a new approach to 
automatically generate text to describe computational analyses. 
This textual description of methods is human readable and is 
automatically generated from provenance records, workflows, 
and other formal records of computational experiments. We 
ensure that they offer an inspectable description of the 
computations by requiring that all the evidence mentioned is 
persistently stored. They are guaranteed to reflect the actual 
computations carried out, and are human-readable so they can 
be included in papers if desired. Because they are 
automatically generated, the narratives can be easily 
customized to the reader’s level of expertise and interest. 

The paper begins motivating the need to improve on the way 
that computational methods are described in papers, and the 
existing approaches to document them and improve the way 
articles are written. We then show examples of different textual 
descriptions that could be automatically generated for the same 
computational experiment. We discuss a range of dimensions 
for constructing different data narrative accounts depending on 
the reader’s purpose and interest in detail. We propose an 
approach where data narratives are generated based on a 
combination of explanation patterns and query patterns. We 
describe DANA, an initial prototype that illustrates how data 
narratives can be implemented, and discuss the computational 
artifacts and the queries used to obtain information needed 
about the computational experiment. We present a formative 
evaluation of our approach regarding the understandability and 
usefulness of the automatically generated narratives, and 
conclude with a discussion of potential applications and future 
work. 

MOTIVATION: METHODS IN PUBLISHED ARTICLES 
As computational methods have become ubiquitous in 
scientific research, it is imperative that we examine how they 
are recorded and published as part of the scientific record that 
supports new results and claims. Computational methods are 
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complex procedures, which are challenging for humans to 
explain with enough detail when teaching others [26]. In this 
section we describe the challenges specific to describing 
computational methods in scientific articles. 

Textual Descriptions of Methods 
Textual descriptions of methods in articles may be incomplete 
[55; 20; 16]. Authors focus on conveying the major 
contributions of the work and describe the methods in that 
light, omitting details that may be important for transparency 
and reproducibility. For example, [20] describes our work to 
reproduce an article whose authors had published the data, 
software, and results. We analyzed whether the original article 
and supporting materials were enough to reproduce the method 
for three kinds of researchers: 1) someone with basic 
knowledge about the domain at hand, such as a developer hired 
to work in a lab; 2) a novice researcher, such as a new student; 
3) an experienced researcher with the same level of expertise 
as the authors. We created reproducibility maps, that showed 
whether each of those categories of users could figure out from 
the text of the paper how the work was done. Even in this case 
where the original authors set out to make their work as 
transparent as possible, the reproducibility maps showed that 
only experienced researchers were able to figure out how to 
fully reproduce the work. There are many similar results in the 
literature, some mentioning the lack of publication of data [55] 
and others the lack of details in the description of methods: 

“Data processing is often not described well enough to 
allow for exact reproduction of the results, leading to 
exercises in ‘forensic bioinformatics’ where aspects of 
raw data and reported results are used to infer what 
methods must have been employed.” [3]. 

There are several reasons why text descriptions of methods are 
riddled with problems. First, articles often have space 
limitations, so authors tend to omit anything that seems not 
important. Second, they are manually written without any 
particular guidance, it is easy for authors to provide imprecise 
descriptions. Finally, computational methods are often 
complex procedures with non-linear structures that are hard to 
describe with the sequential nature of text [15; 53].  

Even when authors endeavor to describe enough details, textual 
descriptions are often ambiguous. A study reported in [37] 
looked at writing software from scratch based on the textual 
descriptions reported in geophysics papers. As the authors 
state: 

“Ambiguity in program descriptions leads to the 
possibility, if not the certainty, that a given natural 
language description can be converted into computer 
code in various ways, each of which may lead to 
different numerical outcomes. […] Ambiguity can occur 
at the lexical, syntactic or semantic level and is not 
necessarily the result of incompetence or bad practice. It 
is a natural consequence of using natural language and is 
unavoidable.” [37] 

We also find that the methods sections of articles mix general 
methods with specific details of the executions carried out. The 
original article of the reproducibility work that we mentioned 

above [20] provides a good example as it describes how to 
match proteins and drugs: 

“The SMAP software was used to compare the binding 
sites of the 749 M.tb protein structures plus 1,446 
homology models (a total of 2,195 protein structures) 
with the 962 binding sites of 274 approved drugs, in an 
all-against-all manner. While the binding sites of the 
approved drugs were already defined by the bound 
ligand, the entire protein surface of each of the 2,195 
M.tb protein structures was scanned in order to identify 
alternative binding sites. For each pairwise comparison, 
a p-value representing the significance of the binding 
site similarity was calculated.” [38] 

Note that this paragraph mixes high-level abstract information 
with execution details: it mentions the particular software 
(SMAP) as well as its function (comparing binding sites), the 
size of the specific input datasets (962 and 274), and the 
general type of result returned (a p-value). 

Although there are many tools and recommendations of best 
practices for authors [33], it is up to the scientists to decide 
what to include in an article and its methods section. 

In summary, textual descriptions of methods in articles are far 
from ideal, since the text tends to be: 1) Incomplete, omitting 
important details about the computations performed; 2) 
Ambiguous, having several interpretations of how the 
computations were actually done; 3) Blended, combining 
general methods with execution details. 

Executable Papers and Electronic Notebooks  
Another area that has received significant attention is papers 
that go beyond a static PDF [7; 8; 50]. In some cases, articles 
are augmented so that figures that show visualizations can be 
interactive. In other cases, the references are explicitly linked 
to the papers cited, so it is easy to navigate the related work. 
Although these efforts enhance traditional paper narratives, the 
closest to our goals is the work on enhancing the textual 
descriptions of methods.  

Interactive notebooks are gaining popularity, including Jupyter 
Notebook for Python [39], knitr for R [58] and the Computable 
Document Format for Mathematica [57]. Executable papers are 
designed to enable readers to inspect and re-run experiments 
[47]. Readers can inspect the data and the code in these 
frameworks, use them to re-generate figures, and try different 
data and parameters to explore variations on the experiments 
that were done. However, the text in these notebooks is 
completely generated by hand. Therefore, there is no guarantee 
that the text reflects the actual computations. In addition, much 
like with a traditional paper there is a single textual description 
that is supposed to satisfy all readers no matter their level 
interest or level of expertise. 

Descriptions of Workflows 
Workflows capture a computational analysis as a dataflow 
among steps. Workflow repositories like myExperiment [13] 
and CrowdLabs [44] provide mechanisms to publish and 
search workflows, particularly to improve reproducibility and 
sharing of computational experiments. However, the 



descriptions of workflows are manually generated and 
therefore are as incomplete as those in scientific articles.  

In prior work we analyzed the textual descriptions of 
workflows from the myExperiment repository [34]. We found 
significant differences between what was included in the 
textual descriptions and the actual formal specification of the 
workflows.  

Workflows mix major method steps with ancillary steps that do 
for example minor data reformatting. In other work we 
analyzed workflows to identify by hand general categories of 
steps (motifs) that make such distinctions [21]. But workflows 
themselves have no explicit mention of the relative importance 
of steps and all steps are treated equally.  

In summary, although workflows provide a formal 
computational representation of methods, the descriptions that 
can be generated for workflows alone are: 1) Incomplete, 
where workflow representations cannot express important 
semantic properties of steps; 2) Flat, with abstractions often 
absent from the workflow structure; and 3) Undifferentiated, as 
there is no explicit distinction between important steps and 
ancillary steps. 

Workflows can be integral elements of data narratives, but 
need to be appropriately explained and presented to scientists 
in order to improve understandability and increase reuse. 

DATA NARRATIVES 

Since it is possible to automatically record in detail the 
computational methods of papers, it is curious that their 
descriptions are still written manually rather than generated 
automatically. The key idea of data narratives is that a system 
can not only keep detailed provenance records of how an 
analysis was done, but also generate automatically human-
readable descriptions of those records that can be presented to 
users and ultimately included in papers or reports.  

We pose the challenge of automatically generating text 
descriptions of computational methods used to generate the 
data being described. Several accounts could be generated from 
the same computational experiment. They should be linked to 
the provenance records and to the individual datasets and 
software used in the analysis. Data narratives provide a human-
understandable report of the computations done to generate 
new data, grounded on inspectable evidence needed for 
reproducibility. 

A data narrative includes: 1) interlinked provenance records, 
high-level workflows, and other relevant information about a 
computational experiment, 2) persistent identifiers for all the 
data, software, and workflows used in the analysis, and 3) data 
narrative accounts that contain alternative descriptions of an 
analysis with a different focus or level of detail. Data narratives 
must be:  

• Human-readable, unlike traditional traces and provenance 
records that are for machine processing rather than for 
human consumption.  

• Customizable, where different narrative accounts could be 
generated for readers with different purposes and expertise 
levels.  

 

Figure 1: A range of examples of data narrative accounts for a 
dataset, the topic model shown at the bottom right. The different 
data narratives explain from different perspectives and various 
levels of abstraction how the dataset was generated. 

• Persistent, since the evidence that they portray is always 
permanently available as back up. 

Because they are automatically generated, data narratives 
should also be: 

• Accurate, reflecting exactly the computations that took 
place and being true to the actual computations run. 

• Inspectable, interlinking information to make the 
computational analysis understandable, verifiable, and 
reproducible. 

• Publishable, where computer-generated reports would 
become part of papers. They could be included in the 
methods section of the paper or as supplementary 
materials, and complemented by additional context 
provided manually by the authors.  

Figure 1 illustrates with examples a wide range of data 
narrative accounts for the topic model visualization at the 
bottom right of the figure. The dataset to be described is a topic 
model as a term-topic matrix generated with a Latent Dirichlet 
Allocation (LDA) algorithm [6] and visualized with Termite 
[11]. Data narrative account (1) treats the method itself as a 
black box, describing input datasets, execution parameters, and 
results showing persistent identifiers for input and output data. 
Account (2) describes the main inputs datasets that were 
involved in the creation of the target results. Account (3) 
describes the main steps of the method based on their 
functionality. Data narrative account (4) describes all the steps. 
Account (5) gives a more specific description of the algorithm 
used. Data narrative account (6) gives a description focused on 
the software used for the computations. This small example 
illustrates the different data narrative accounts that could be 
generated to describe the same dataset. Our goal is to generate 
these different kinds of data narrative accounts automatically. 

GENERATING DATA NARRATIVE ACCOUNTS 

Our approach to generate data narrative accounts is to combine 
pattern-based explanations with query-based information 
retrieval over the computational records.  



Explanation Patterns 

We follow natural language generation techniques based on 
explanation patterns [12]. Explanation patterns contain the 
main text to include and a few variables that are filled by 
objects, in our case resulting from queries. The following are 
examples of explanation patterns used for data narrative 
accounts (1) and (4) from Figure 1 respectively: 

[P1] “?method was run on the ?dataset1Name dataset 
(?doi1), (…) and ?datasetNName (?doiN), with ?param1 set 
to ?param1Value, (…) and ?paramN set to ?paramNValue. 
The ?resultName results are at ?resultDOI”. 
[P2] “First, the input data is processed by ?step1, followed 
by ?step2, ?step3, (…) and ?stepN. The final results are 
produced by ?stepN”. 

We have created hierarchies of explanation patterns along the 
following major dimensions: 

• Number of steps: This can range from zero (where the 
method is treated as a black box) to all steps. 

• Experimental relevance of steps, parameters, and datasets: 
This ranges from experiment-critical to experiment-relevant 
to ancillary.  

• Algorithmic abstractions: These range from the specific 
software run, to classes of algorithms, to very high-level 
function descriptions. 

•  Execution information: These range from focusing on the 
execution (e.g., runtime of steps), to software and datasets 
used, to more general descriptions of the execution results. 

• Software descriptions: These range from just the name, to 
high-level characteristics of the software (e.g., language, 
license, authors), to very detailed documentation. 

• Data descriptions: These are based on hierarchies of data 
types from more general to more specific. 

For each dimension and level of detail, a different explanation 
pattern would be used to generate the data narrative. A data 
narrative account could be along a single dimension. It can also 
combine together more than one dimension. For example, a 
data narrative may show only experiment-critical steps 
combined with very detailed software descriptions.  

Query Patterns 
Query patterns access information sources about the 
computational experiment, such as: 

• Provenance records that include workflows, software 
components, and datasets used. 

• Workflows descriptions at different levels of abstraction. 
These can include sub-workflow abstractions as well as 
abstract descriptions of steps as hierarchies of increasingly 
more specific classes. 

• Data and software registries, where metadata is available 
for datasets and software components of workflows. 

 
Figure 2: Overview of DANA, a prototype system for automated 

generation of data narratives. 

Better data narrative accounts can be generated when there are 
appropriate descriptions and abstractions in these information 
sources.  

DANA: AUTOMATICALLY GENERATED DATA 
NARRATIVES 

DANA is a prototype that automatically generates data 
narratives using explanation patterns and query patterns. Figure 
2 shows an overview of its main components. DANA takes as 
input the Experiment Records, which includes the following 
information: 

1. A link to a provenance record in a repository that describes 
the execution as well as links to more abstract workflow 
descriptions used to generate the dataset being narrated. 

2. A set of persistent identifiers for all the datasets and 
software in the provenance record 

3. A link to a software catalog where all the software used in 
the workflow steps is described with basic software 
metadata [54]. The workflow steps must correspond to 
specific functions carried out by software components in 
this catalog. These functions are described in an ontology 
from specific to more general (e.g., a merge sort step is a 
subtype of sorting step). They are also annotated with the 
relative criticality that they have in an experiment so they 
can be included or not in more summarized data narrative 
accounts.  



 

 
Figure 3: Overview of how the data narratives in Figure 1 can be 

generated from workflow execution information (shown at the 
top), or an abstract workflow template (shown at the bottom). 

DANA contains six types of data narrative accounts that focus 
on different views of the computational experiment: 1) 
execution view, focused on the overall method, inputs and 
parameters, 2) data view, focused on those major inputs that 
directly influence the results, 3) functionality view, focused on 
the functionality of the most important steps of the analysis, 4) 
dependency view, focused on describing the general dataflow 
between the abstract steps of the workflow, 5) implementation 
view, focused on how the functionality of the steps was 
accomplished with concrete algorithms or implementations, 
and 6) software view, which shows details of the software 
packages used (e.g., version, license, etc.). Figure 3 shows 
examples of these 6 narrative types, initially introduced in 
Figure 1, as well as the workflow execution and template used. 
Each narrative type has its own explanation and query patterns.  

Using the Experiment Records, the DANA Generator creates 
an Experiment-Specific Knowledge Base (ESKB). The ESKB 
includes all the relevant information about the traces, 
workflow, software and annotations, linking them together. 
The ESKB allows DANA to reason about this information in 
response to the queries from the explanation patterns. 

 

 
Figure 4: Creating the first data narrative shown in Figure 3 

from the narrative-specific knowledge base. 

Once the knowledge base is created, the DANA Aggregator 
uses a set of query patterns to retrieve from the knowledge 
base the information needed for the different narrative 
templates (e.g., inputs used to generate a particular result, 
dependencies on each of the processes of the workflow, 
information about the version of different software 
components, etc.). The Aggregator then uses the information 
retrieved by each query pattern in each explanation pattern to 
produce each of the narrative accounts. An example is depicted 
in Figure 4, where the DANA Aggregator completes the first 
narrative account presented in Figure 3 by querying the 
knowledge base for crucial pieces of information from the 
workflow template and execution provenance records. 

In order to generate rich provenance records and workflows for 
computational experiments, DANA uses the WINGS semantic 
workflow system. WINGS represents high-level abstract 
workflow templates and uses them to generate executable 
workflows [28]. Figure 3 illustrates the difference, using a 
topic training workflow where the most popular topic trends 
are extracted from a collection of documents [30]. Figure 3 
shows an example of a workflow template at the bottom. It has 
abstract steps, as it includes a step that represents the class of 
algorithms to train topic models, all of them have a parameter 
which is the number of iterations. Workflow components in 
WINGS are organized in an ontology, so more general classes 
represent more abstract descriptions of the algorithms. Figure 3 
shows an example of an executable workflow at the top, with 
specific algorithms executed, specific datasets used, specific 
parameter values, and specific resources for each computation. 
In particular, the step for topic training is instantiated to Online 
LDA, which takes in additional parameters and generates 
additional outputs besides the topic model itself. 



The component ontology has a general class of “Train topics”, 
with a subclass “Train topics LDA” which represents Latent 
Dirichlet Allocation (LDA) algorithms. There are three 
available implementations in the component ontology: Mallet 
[46], Online LDA [36], and Parallel LDA [56]. The workflow 
execution refers to a specific implementation (Online LDA), 
while the higher-level template refers to a class of algorithms 
(Train topics). The different narratives in Figure 1 can be 
generated from information in each of these types of 
workflows and component ontologies, as shown in Figure 4. 

WINGS exports the provenance of new data results using a 
methodology described in [17]. The provenance record 
contains the executed workflow as well as the associated 
abstract workflow. The methodology exports the workflow 
templates and executions with the OPMW model [18]. OPMW 
extends existing models like P-Plan [19] for representing 
workflow templates, and the W3C provenance standard PROV 
[42] for addressing the workflow execution provenance. 
OPMW supports the representations of workflows at a fine 
granularity with a lot of details pertaining to workflows that are 
not covered in those more generic languages. OPMW also 
allows the representation of links between a workflow template 
and a workflow execution that resulted from it, which we use 
for our narratives. All the links between a workflow and its 
execution are captured in the provenance repository [25], 
allowing DANA to retrieve any information needed to generate 
data narratives. 

A second major source of information for DANA to generate 
narratives is the persistent identifiers for datasets and software 
in the provenance record. All the steps, inputs, outputs and 
intermediate results exported with the publishing methodology 
are assigned persistent unique uniform resource identifiers 
(URIs). URIs are unique for each resource, and they make 
them accessible by both humans and machines, as they allow 
returning different contents (i.e., HTML for humans and a 
more structured content like RDF/XML for machines). 
Another advantage of using URIs is that they are compatible 
with minting persistent digital object identifiers (DOIs) to 
resources when desired. DOIs are important resources for 
attributing credit to any scientific output. In DANA, an author 
can choose to mint a DOI for a dataset generated by a 
workflow, or to access it through its URI.  

The third major source of information for narrative generation 
is a software catalog. The WINGS software catalog includes an 
ontology with abstract classes of workflow components. For 
software metadata, we use OntoSoft, [32] which includes an 
ontology of software metadata that can be queried to retrieve 
metadata properties about the software. The metadata captured 
by OntoSoft falls into six major categories based on 
information that a scientist would seek about the software: 1) 
identify software, 2) understand and assess software, 3) 
execute software, 4) get support for the software, 5) do 
research with the software, and 6) update the software. Finally, 
the workflow components are annotated with their criticality 
level according to their experimental relevance, as are their 
input and output datasets and parameters. For the step 

annotations, we use common workflow motifs [21], which are 
domain independent conceptual abstractions on workflow steps 
that aim to capture their main functionality (e.g., combine, 
reformat, filter, visualize, etc.). Based on this functionality, we 
assess how critical a step is for the workflow. For example, if a 
workflow motif for a step is “filtering”, then it is a kind of data 
pre-processing and therefore not an experiment-critical step. 
The common workflow motifs are organized in a catalog with 
23 motif types, based on the most common motifs in a large 
corpus of workflows from several workflow systems [21].  

DANA takes the Experiment Descriptions as RDF [43]. It uses 
a semantic triple store [10] for the ESKB. We use SPARQL 
queries [51] to formulate query patterns to retrieve the 
information needed for the explanation patterns. 

Figure 5 shows the narratives that DANA generated 
automatically for the dataset and workflows shown in Figure 3. 
An example of a query pattern used in data narrative 1 to get 
the location, DOI, and workflow used to generate a dataset is: 

select ?label ?loc ?doi ?wf ?wfName where { 
 <datasetID> rdfs:label ?label; 
 opmo:account ?exec; 
 opmw:hasLocation ?loc; 
 bibo:doi ?doi. 
 ?exec opmw:correspondsToTemplate ?wf. 
 ?wf rdfs:label ?wfName. 
} 

In the query, the datasetID refers to the identifier of the 
dataset described with the narrative. The ?label is a human 
readable description of the dataset, while the ?loc refers to the 
location where the file is stored. The ?doi refers to the 
permanent identifier used to store the dataset and the ?exec 
refers to the execution that produced the dataset described in 
the narrative. Finally, ?wf is used to refer to the workflow that 
led to the execution that resulted in the dataset, along with its 
human readable description ?wfname. For simplicity, we use 
namespaces (opmw, opmo, bibo, rdfs) for referring to the 
properties linking the different identifiers in the knowledge 
base.  

Data narrative 1 also uses a query pattern to extract the location 
(i.e., a URI or DOI) of the dataset and the values of the 
parameters used as input of the workflow: 

select ?input ?loc ?value where { 
 <datasetID> opmo:account ?exec. 
 ?input a opmw:WorkflowExecutionArtifact. 
   opmo:account ?exec. 
 optional(<input> opmw:hasLocation ?loc). 
 optional(<input> opmw:hasValue ?value). 
 filter not exists{?input prov:wasGeneratedBy ?p} 
} 

The query retrieves those workflow inputs (which include both 
datasets and parameters) that share the same execution ?exec 
as datasetId and are not generated by any intermediate step 
?p. The optional directive is used in this case, because 
parameters have a value but do not have a location, while 
datasets have a location but not a value. 



 

 
Figure 5: Data narratives automatically generated by DANA for a topic model.  

 
Data narrative 2 requires a more elaborate query to retrieve the 
input datasets (?i) by navigating the provenance trace. The 
query is: 

select ?i where { 
 <datasetID> (prov:used/prov:wasGeneratedBy)* ?i. 
 filter not exists{?i prov:wasGeneratedBy ?p} 
} 

The query retrieves all the inputs and outputs of any step that 
had an impact on the target dataset <datsetID> of interest. It 
does so in a recursive manner (represented with an asterisk in 
the query), by chaining the used and wasGeneratedBy 
properties. Since in this narrative we are only looking for the 
global input datasets of the workflow, we filter all those 
datasets that have been generated by an intermediate step ?p.  

Data narrative 3 requires accessing the criticality descriptions 
attached to the workflow, and in particular the use of motifs. 
The following query retrieves the type of functionality (?f) 
associated to each of the workflow steps (?step), along with 
their inputs (?i) and outputs (?o): 

select ?step ?f ?i ?o where { 
 ?step motif:hasMotif ?m. 
 ?m a ?f. 
 ?step opmw:uses ?i. 
 ?o opmw:isGeneratedBy ?step. 
} 

The rest of the narratives shown in Figure 5 are generated with 
similar explanation and queriy patterns, including the retrieval 
of the software metadata for data narrative 6.  



 
Figure 6: Data narratives generated by DANA for a water metabolism analysis.  

To illustrate the generality of DANA, we show in Figure 6 the 
narrative accounts for a water metabolism analysis. By using 
the Experiment Records which include the execution, template 
and metadata of the workflow, the narrative accounts are 
created with the same explanation and query patterns as those 
used to generate the narrative accounts in Figure 5. We are 
currently applying DANA in additional scientific domains. 

The software for DANA and the Experiment Records used for 
generating the data narratives shown in this paper is publicly 
available [22]. 

FORMATIVE EVALUATION 

We did a formative evaluation of our approach with a small set 
of subjects. We used four workflows for web-analytics that do 
simple analyses, such as plotting user statistics on web 
accessibility, finding popular topics in a web page, detecting 
spam, or analyzing how users contribute to a given web page. 
We created a survey with six different target user scenarios, 
designed so that different types of narratives would be more 
appropriate. Each scenario consists of: 1) a description of a 
situation where a user has to do a task, such as a developer that 
needs to implement a method; 2) a workflow sketch of the 
analysis done; and 3) six candidate narratives of that workflow 
sketch. In Scenario 1 Bob is a computer programmer that is 
asked by his boss, Alice, to help her determine which reports 
were used last month to produce the visualization that appears 
on their website, and for this scenario the subject was asked to 

choose the data narrative that they think is most appropriate for 
Bob to use. Scenario 2 focused on generating a description of 
an analysis for an experienced programmer who may be 
familiar with the software, while Scenario 3 aimed at 
describing the same analysis to a novice programmer. Scenario 
4 asked for a description of an analysis so as to be able to 
compare its results with the result from the previous year’s 
data. Scenario 5 aimed to provide a description of an analysis 
for the board of directors of the company. Finally, Scenario 6 
aimed at providing the details of an analysis to the system 
administrator of the company. 

For each scenario, the subjects were asked to rate on a Likert 
scale how appropriate they found each narrative (1 
corresponded to too little information, 5 corresponded to too 
much information), and then select the narrative that they 
considered most appropriate (if any). With these questions, we 
wanted to determine which narrative types were perceived as 
containing appropriate information and levels of detail. In 
addition, subjects were asked which narrative was most 
appropriate for that particular situation, and to provide their 
own narrative if they could think of a better one.  

 The survey was conducted online. The subjects were graduate 
and undergraduate students familiar with workflows but with 
little or no programming background. All responses were 
anonymous. In total, we received 12 responses. The survey 
[23] and the data collected [24] are available online. 



 
Figure 7: Level of detail of the data narratives for all scenarios. 

 
Figure 8: Distribution of the narratives best fit for addressing 

each scenario, according to the questionnaire results. 

Figures 7 and 8 summarize the results of the survey. Figure 7 
shows a box and whiskers diagram of the subjects’ ratings for 
each type of data narrative account across all scenarios. The y 
axis of the figure represents the rating regarding the level of 
detail of the narrative account, where 1 indicates that the 
narrative account has missing details and 5 that the narrative 
account has too much information. The narrative accounts that 
are perceived as most appropriate are the method, abstract and 
implementation views, which include details about the main 
step functionality, the abstract description of the whole 
workflow and its correspondent algorithm implementation 
respectively. The execution and data narrative accounts, which 
focus solely on the data inputs and the parameters are often 
considered to have insufficient details for describing most 
scenarios. In contrast, the software narrative account which 
contains detailed descriptions of software is considered to be 
overloaded with details in most situations. 

Figure 8 shows a distribution of the narratives chosen by the 
users as most appropriate to address each scenario, which was 

the final survey question for each scenario. There is no general 
consensus on a single type of narrative for a given scenario, 
except for Scenario 6 where the narrative accounts with most 
details (implementation and software) were rated as most 
appropriate. This result illustrates the need for DANA’s 
capability for generating alternative narratives, and that users 
will want to choose different narratives depending on their 
situation. 

We also included a question in the survey where we asked 
subjects to provide a different narrative if they would like a 
different one from those offered as options. There are only 2 
cases where users suggested other narratives. The suggested 
narratives combine some aspects of the different narrative 
types, for example combining parameter information 
(execution account) with implementation details 
(implementation account). This result suggests that 
combinations of the different types of narratives would be 
preferred by users, and is part of our future work.  

RELATED WORK 

Table 1 illustrates how data narratives compare to other ways 
of reporting the methods of papers. Provenance records are 
automatically generated, true to the actual computations that 
took place, and enable inspection. However, they are not 
suitable for human consumption and are not appropriate to be 
included in papers. Because they focus on accurately recording 
the computations, they do not generally abstract from details. 
Visualizations of datasets present data in a human-
understandable format and can be included in articles. 
However, they focus on presenting a dataset in itself and do not 
show the computational method that generated it. Also, they 
are often generated with some manual intervention to filter the 
data and to set presentation parameters. Published articles are 
human understandable and can have persistent identifiers (if 
the authors publish the data and software), and clearly abstract 
from details. However, because they are manually generated 
there is no guarantee that they are accurate with respect to the 
actual computational records or that they enable inspection of 
enough details to reproduce the work. Electronic notebooks 
enable inspecting and understanding the work done by the 
authors, but they have to be manually generated and they are 
not designed for different audiences. Data narratives are 
designed to combine useful features of provenance records, 
visualizations, and articles.  

Narrative visualizations focus on generating an illustration that 
tells a story about the contents of a dataset [52]. Narrative 
science generates text-based stories, also for the contents of a 
dataset [1]. Neither uses provenance or method information, 
but are valuable and could become part of the generation of 
data narratives. 

The creation of abstractions for presentation of scientific 
workflows is not new. ZoomUserviews* [5] explored the idea 
of providing different views of a scientific workflow to reduce 
its complexity visually. [2] proposes to annotate workflows so 
they can be summarized according to the functionality of their 
main steps. Both approaches could be combined with our work 
to include a visual representation of the workflow in the data 
narrative.  



Table 1: Comparing data narratives with other approaches 
 

 
Other related work addresses the textual summarization of 
provenance graphs for human consumption [48]. However, it 
only considers provenance information and only one text 
rendering, rather than using several sources of information and 
several text renderings as data narratives do. 

There have been other efforts to publish the contents of papers 
in structured forms. The nanopublication model [35] describes 
the minimum unit of information for a fact or set of facts (e.g., 
datasets) contained in a paper, along with their provenance. 
The Research Object model [4] proposes to aggregate all the 
resources that are related to a scientific experiment. While 
these approaches capture the knowledge from a machine-
readable perspective, data narrative accounts are human 
readable and focus on generating automatically integrated text 
descriptions of those interrelated resources and interlinking 
them within the text. The Experiment Records could be made 
available as a nanopublication or as a Research Object. 

Finally, other related work presents frameworks with 
explanations for helping users debug software [40], as well as 
learning explanations and including feedback to personalize 
their results [41]. In particular, authors have started to use 
visualizations [45] to help explain and understand comparisons 
of events and text analytics data [14]. That work focuses on 
text analytics and other specific domains, while our work is 
more generally applicable to any domain with scientific 
workflows.  

DISCUSSION 

Data narratives open new avenues for research as well as 
practical applications. In this paper we have focused on the text 
generation of data narratives, but data narratives can be 
multimedia artifacts. Method diagrams could be easily 
generated to go side by side with the text and include only the 
steps, data, or parameters mentioned in the narrative. Tables 
comparing datasets and their characteristics, or software 
components, or entire workflows could be automatically 
generated. Data narratives could also include visualizations of 
intermediate data in addition to the final datasets and findings. 
The most appropriate formats for data narratives may be 
dependent on the field of study, the type of reader, and many 
other factors. Further research is needed to understand the most 
appropriate forms for data narratives.  

Automated data narratives could be included in the methods 
section of papers. One approach would be to initially show 

default narratives (perhaps with average details in all 
dimensions), and let readers select narrative types and details. 
The system would track the most popular narratives among 
readers (or types of readers) and make them the new default. 

There are many opportunities for publishers to exploit data 
narratives. Publishers could see what data narratives a reader is 
looking at, and based on their level of detail make 
recommendations for other articles to read. For example, if a 
reader stops at the LDA level in the explanation of the 
algorithm then there is no point to suggest other papers that use 
variants of LDA, while a reader that is looking into whether 
Mallet or online LDA was used may be interested in seeing a 
paper that uses a different LDA implementation.  

Beyond enhancing how papers are written, data narratives 
could be a powerful extension to workflow repositories and 
protocol specifications (e.g., Nature protocols). Rather than 
relying on manually-generated documentation, or as often 
happens no documentation at all, automated data narratives 
could provide useful information for scientists to understand 
the descriptions and increase their reuse.  

Data narratives could provide a useful paradigm for human-
computer communication, particularly for intelligent systems 
for scientific discovery [9; 31; 27]. Data narratives could 
explain how a new finding was generated by the system. They 
could also provide the basis for new approaches to enable 
scientists to teach computers new scientific methods through 
natural language instruction (e.g., [29]).  

CONCLUSIONS 

In this paper we presented an approach for automatically 
generating data narratives to describe datasets obtained from 
computational methods. Data narratives can be generated from 
information captured in provenance records, workflows, and 
data and software registries. Data narratives accurately reflect 
the analyses performed, include persistent identifiers for all 
resources described, and are human readable. Data narratives 
can be customized for different levels of reader interest and 
expertise, and facilitate transparency and reproducibility. We 
discussed a wide range of research for future work as well as 
potential uses by article authors, readers, and publishers. 
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